Solution:
Let OA=a, OB=b, and OC=c
Then OP=2a and OQ=3b
OA+AB=OB ⇒ AB=b-a
OP+PQ=OQ ⇒ PQ = 3b-2a
OC+CQ = OQ ⇒ CQ = 3b-c
[tex]QM= -\frac{1}{2} PQ = a-\frac{3}{2}b[/tex]
[tex]OM=OQ+QM = 3b + a-\frac{3}{2}b = a+\frac{3}{2}b[/tex]
[tex]OM+MB=OB=>MB = b-(a+\frac{3}{2}b) = -a-\frac{1}{2}b[/tex]
(i) AB = b-a
(ii) PQ = 3b-2a
(iii) CQ = 3b-c
(iv) QM = [tex]a-\frac{3}{2}b[/tex]
(v) MB = [tex]-a-\frac{1}{2}b[/tex]
(vi) OM = [tex]a+\frac{3}{2}b[/tex]