Respuesta :

we are given

[tex]f(x)=\frac{1}{9x-2}[/tex]

For finding inverse function , we do following steps

step-1:

Set f(x)=y

[tex]y=\frac{1}{9x-2}[/tex]

step-2:

Switch x and y

[tex]x=\frac{1}{9y-2}[/tex]

step-3:

now, we can solve for y

[tex]x=\frac{1}{9y-2}[/tex]

Multiply both sides by 9y-2

[tex]x\times (9y-2)=(9y-2)\times \frac{1}{9y-2}[/tex]

[tex]x(9y-2)=1[/tex]

[tex]9xy-2x=1[/tex]

Add both sides by 2x

[tex]9xy-2x+2x=2x+1[/tex]

[tex]9xy=2x+1[/tex]

now, we can divide both sides by 9x

[tex]y=\frac{2x+1}{9x}[/tex]

so, we get inverse function as

[tex]f^{-1}(x)=\frac{2x+1}{9x}[/tex]................Answer