Number 12.

Which ordered pair is a solution of the linear system x + 2y = -8 and -4x + y = 5

A. (2, -3)

B. ( -3, -2)

C. (0,0)

D. ( -2, -3)

E. ( -1, 0)

Respuesta :

D

given the 2 equations

x + 2y = - 8 → (1)

- 4x + y = 5 → (2)

multiply (1) by 4

4x + 8y = - 32 → (3)

add (2) and (3) term by term to eliminate term in x

9y = - 27 ( divide both sides by 9 )

y = - 3

substitute y = - 3 in either (1) or (2) and solve for x

(1) : x - 6 = - 8 ( add 6 to both sides )

x = - 2

solution is (- 2, - 3 ) → D


Ordered pair is simply the solution to a system of equation.

The solution is: (d) (-2,-3)

The equations are given as:

[tex]\mathbf{x + 2y = -8}[/tex]

[tex]\mathbf{-4x + y = 5}[/tex]

Make x the subject in [tex]\mathbf{x + 2y = -8}[/tex]

[tex]\mathbf{x = -8 - 2y}[/tex]

Substitute [tex]\mathbf{x = -8 - 2y}[/tex] in [tex]\mathbf{-4x + y = 5}[/tex]

[tex]\mathbf{-4(-8 - 2y) + y = 5}[/tex]

Open brackets

[tex]\mathbf{32 + 8y + y = 5}[/tex]

[tex]\mathbf{32 + 9y = 5}[/tex]

Subtract 32 from both sides

[tex]\mathbf{9y = -27}[/tex]

Divide both sides by 9

[tex]\mathbf{y = -3}[/tex]

Substitute [tex]\mathbf{y = -3}[/tex] in [tex]\mathbf{x = -8 - 2y}[/tex]

[tex]\mathbf{x = -8 - 2(-3)}[/tex]

[tex]\mathbf{x = -8 +6}[/tex]

[tex]\mathbf{x = -2}[/tex]

Hence, the solution is: (-2,-3)

Read more about ordered pairs at:

https://brainly.com/question/6585011