BKaif10
contestada

f(x) = g(x+1)

f(y) = 2018y + 2016y +. . . . .+ 2y

g(x) = h(2x)-x

If h(2018) = [tex]a^{3}[/tex] and a is an integer, then a = ?

Respuesta :

[tex]g(x)=h(2x)-x\implies h(2x)=g(x)+x[/tex]

[tex]f(x)=g(x+1)\implies g(x)=f(x-1)[/tex]

Taken together, we get

[tex]h(2x)=f(x-1)+x[/tex]

Since [tex]2018=2\cdot1009[/tex], the above gives

[tex]a^3=f(1008)+1009[/tex]

We have

[tex]f(y)=\displaystyle\sum_{i=0}^{1008}(2018-2i)y=1019090y[/tex]

so that

[tex]a^3=1019090\cdot1008+1009[/tex]

[tex]a^3=1027243729=1009^3[/tex]

[tex]\implies a=1009[/tex]