Respuesta :

Answer:

a. 4

Step-by-step explanation:

We want to find;

[tex]\lim_{h \to 0} \frac{f(2+h)-f(2)}{h}[/tex]

If [tex]f(x)=x^2[/tex].

[tex]f(2+h)=(2+h)^2[/tex]

[tex]f(2+h)=4+4h+h^2[/tex]

Also;

[tex]f(2)=2^2[/tex]

[tex]f(2)=4[/tex]

This implies that;

[tex]\lim_{h \to 0} \frac{4+4h+h^2-4}{h}[/tex]

Simplify;

[tex]\lim_{h \to 0} \frac{4h+h^2}{h}[/tex]

Factor to get;

[tex]\lim_{h \to 0} \frac{h(4+h)}{h}[/tex]

Cancel the common factors.

[tex]\lim_{h \to 0} 4+h[/tex]

Substitute h=0 to get

[tex]\lim_{h \to 0} 4+h=4+0=4[/tex]