Solve by factoring: X^3+7x^2-x-7=0

Answer:
[tex]\boxed{\bold{\left(x+7\right)\left(x+1\right)\left(x-1\right)=0}}[/tex]
Step-by-step explanation:
Factor [tex]\bold{x^3+7x^2-x-7}[/tex]
[tex]\bold{\left(x+7\right)\left(x^2-1\right)}[/tex]
Factor [tex]\bold{0}[/tex]
[tex]\bold{0}[/tex]
Rewrite Equation
[tex]\bold{\left(x+7\right)\left(x+1\right)\left(x-1\right)=0}[/tex]
[tex] {x}^{3} + 7 {x}^{2} - x - 7 = 0 \\ \Leftrightarrow {x}^{2} (x + 7) - (x + 7) = 0 \\ \Leftrightarrow ( {x}^{2} - 1)(x + 7) = 0 \\ \Leftrightarrow (x - 1)(x + 1)(x + 7) = 0 \\ \Leftrightarrow x = - 7 \: \vee \: x = - 1 \: \vee \: x = 1[/tex]