If g=26.4 and F=35° find h. Round to the nearest tenth (picture provided)

For this case we have to, by definition:
[tex]cos (F) = \frac {h} {26.4}[/tex]
This means that, the cosine of the angle F, will be equal to the leg adjacent to the angle on the hypotenuse of the triangle.
So, by clearing h we have:
[tex]h = 26.4 * cos (35)\\h = 26.4 * 0.81915204\\h = 21.6256[/tex]
Rounding out the value of h we have:
[tex]h = 21.6[/tex]
Answer:
Option B
Answer:
The correct answer is option b. 21.6
Step-by-step explanation:
Points to remember:-
Trigonometric ratio
Cos θ = adjacent side/Hypotenuse
From the figure we can see a right triangle triangle FGH.
To find the value of h
It is given that, g=26.4 and F= 35°
Cos F = adjacent side/Hypotenuse
Cos 35 = adjacent side/Hypotenuse
= FG/FH = h/g
h = g * Cos F = 26.4 * Cos 54 = 26.4 * 0.8191 = 21.62 ≈ 21.6
Therefore the correct answer is option b. 21.6