Respuesta :

Answer:

option A and B are correct.

Step-by-step explanation:

Given: [tex]p(t) = \frac{64}{1 + 11e^{-.08t} }[/tex]

Option A: [tex]\lim_{t \to \infty} \frac{64}{1 + 11e^{-.08(\infty)} }  = \frac{64}{1 + 0}  = 64[/tex]

Option A is true,

Option B: [tex]P(0) = \frac{64}{1 + 11}  = 5.33[/tex]

Option B is also true.

Option C:

[tex]P(t + 1) = \frac{64}{1 + 11e^{-.08(t + 1)} }  = \frac{64}{1 + 10.15e^{-.08t} } \\1.08 · P(t) = \frac{64 · 1.08 }{1 + 11e^{-.08t} }   = \frac{69.12}{1 + 11e^{-.08t} }[/tex]

P(t + 1) ≠ 1.08 · P(t)

Option C is incorrect.

Option D:  It is also incorrect, because according to option 2 earth's population will not grow exponentially without Bound.