Wackala
contestada

The tables represent two linear functions in a system,
What is the solution to this system?
(1,0)
(1,6)
(8, 26)
(8, -22)

The tables represent two linear functions in a system What is the solution to this system 10 16 8 26 8 22 class=

Respuesta :

gmany

Answer:

(8, -22)

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

First table:

(-4, 26), (0, 10) → b = 10

[tex]m=\dfrac{10-26}{0-(-4)}=\dfrac{-16}{4}=-4[/tex]

[tex]\boxed{y=-4x+10}[/tex]

Second table:

(-4, 14), (0, 2) → b = 2

[tex]m=\dfrac{2-14}{0-(-4)}=\dfrac{-12}{4}=-3[/tex]

[tex]\boxed{y=-3x+2}[/tex]

We have the system of equations:

[tex]\left\{\begin{array}{ccc}y=-4x+10&(1)\\y=-3x+2&(2)\end{array}\right\\\\\text{Put (1) to (2):}\\\\-4x+10=-3x+2\qquad\text{subtract 10 from both sides}\\-4x=-3x-8\qquad\text{add 3x to both sides}\\-x=-8\qquad\text{change the signs}\\x=8\\\\\text{Put the value of x to (2):}\\\\y=-3(8)+2\\y=-24+2\\y=-22[/tex]

Allo55

Answer:D (8,-22)

Step-by-step explanation: