How long must a ladder be to reach the top of 20” wall if the ladder and the wall form a 32 angle at the top

Answer: 23.58
Step-by-step explanation:
[tex]cos\theta=\dfrac{adjacent}{hypotenuse}\\\\\\cos(32^o)=\dfrac{20}{x}\\\\\\x=\dfrac{20}{cos(32^o)}\\\\\\x=23.58[/tex]
Answer:
23.97 ft
Step-by-step explanation:
In this question apply the expression for determining cosine of an angle.
Cosine of an angle x°=length of the adjacent side÷hypotenuse
[tex]Cos\alpha =\frac{A}{H}[/tex]
where α is the angle in degrees, A is the adjacent side length, and H is the hypotenuse
Given α=32° and A=20ft H=?
Applying the expression
[tex]Cos\alpha =\frac{A}{H} \\\\Cos32=\frac{20}{H} \\\\0.8342=\frac{20}{H}\\ \\H=\frac{20}{0.8342} =23.97[/tex]
In this case, the length of the ladder represents the hypotenuse side of the triangle which will be 23.97 ft