Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the exact values of the trigonometric ratios

sin30° = [tex]\frac{1}{2}[/tex], cos30° = [tex]\frac{\sqrt{3} }{2}[/tex]

Then

sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{17}{y}[/tex] = [tex]\frac{1}{2}[/tex]

Cross- multiply

y = 2 × 17 = 34

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{x}{y}[/tex] = [tex]\frac{x}{34}[/tex] and

[tex]\frac{x}{34}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2x = 34[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

x = 17[tex]\sqrt{3}[/tex]

Hence

x = 17[tex]\sqrt{3}[/tex] and y = 34