Answer:
[tex]v = \sqrt{v_0^2 - \frac{2k}{3}(s^3 - s_0^3)}[/tex]
v = 9.67 m/s
Explanation:
As we know that acceleration is rate of change in velocity
so it is defined as
[tex]a = \frac{dv}{dt}[/tex]
[tex]a = v\frac{dv}{ds}[/tex]
here we know that
[tex]a = - ks^2 = v\frac{dv}{ds}[/tex]
now we have
[tex]vdv = - ks^2ds[/tex]
integrate both sides we have
[tex]\int vdv = -k \int s^2ds[/tex]
[tex]\frac{v^2}{2} - \frac{v_0^2}{2} = -k(\frac{s^3}{3} - \frac{s_0^3}{3})[/tex]
[tex]v^2 = v_0^2 - \frac{2k}{3}(s^3 - s_0^3)[/tex]
here we know that
[tex]v_0 = 10 m/s[/tex]
[tex]s_0 = 3 m[/tex]
[tex]v^2 = 10^2 - \frac{2(0.10)}{3}(5^3 - 3^3)[/tex]
[tex]v = 9.67 m/s[/tex]