A 6kg robot is required to climb a 45 degree incline. The wheel radius is 20mm, what torque is required to drive the robot at a constant rate? The robot must accelerate at up to 10 mm/s^2. What torque is required?

Respuesta :

Answer:

Given:

mass of robot, m = 6 kg

radius of the wheel, r = 20 mm = 0.02 m

acceleration, a = 10 [tex]mm/s^{2} = 10\times 10^{-3} m/s^{2}[/tex]

acceleration due to gravity, g = 9.8[tex]m/s^{2}[/tex]

inclination, [tex]\theta = 45^{\circ}[/tex]

Solution:

Refer to fig 1

Force is given by:

F = mgsin[tex]\theta[/tex]

Torque is given by:

Torque, [tex]\tau = F\times r = mgrsin\theta [/tex]                  

[tex]\tau = 6\times 9.8\times 0.02\times sin45 [/tex]

[tex]\tau = 6\times 9.8\times 0.02\times \frac{1}{\sqrt {2}}[/tex]

[tex]\tau = 0.83 N-m[/tex]

Refer to fig 2.

Provided the acceleration of the wheel, the Force and torque is now:

Force, F =  mgsin[tex]\theta + ma[/tex]

Torque, [tex]\tau = F\times r = Mgrsin\theta + Mar[/tex]

[tex]\tau = 6\times 9.8\times 0.02\times \frac{1}{\sqrt {2}} + 6\times 10\times 10^{-3}\times 0.02[/tex]

[tex]\tau = 0.8312 N-m[/tex]

Ver imagen ConcepcionPetillo
Ver imagen ConcepcionPetillo