Answer:
Yes the integral can be evaluated by integration by parts as solved below.
Step-by-step explanation:
[tex]\int x^{2}e^{2x}dx[/tex]
Taking algebraic function as first function and exponential function as second function we have
[tex]\int x^{2}e^{2x}dx=x^{2}\int e^{2x}dx-\int (x^{2})'\int e^{2x}dx\\\\=x^{2}\frac{e^{2x}}{2}-\int 2x\times \frac{e^{2x}}{2}dx\\\\\frac{x^{2}e^{2x}}{2}-\int xe^{2x}dx\\\\Now\\\\\int xe^{2x}dx=x\int e^{2x}dx-\int 1\cdot \int e^{2x}dx\\\\=\frac{xe^{2x}}{2}-\int \frac{e^{2x}}{2}dx\\\\\frac{xe^{2x}}{2}-\frac{e^{2x}}{4}\\\\\therefore \int x^{2}e^{2x}dx=\frac{x^{2}e^{2x}}{2}-\frac{xe^{2x}}{2}+\frac{e^{2x}}{4}[/tex]