Answer:
The width of the border can be 9 feet or 3.5 feet.
Step-by-step explanation:
Let the width be x
Length of room = 10 feet
Breadth of room = 15 feet
Length of rug = 10-2x
Breadth of rug = 15-2x
Area of rug = [tex](10-2x)(15-2x)[/tex]
We are given that the area of the rug is 24 square feet.
So, [tex](10-2x)(15-2x)=24[/tex] ---A
[tex]150-20x-30x+4x^2=24[/tex]
[tex]150-24-50x+4x^2=0[/tex]
[tex]126-50x+4x^2=0[/tex]
[tex]2(x-9)(2x-7)=0[/tex]
[tex]x=9,\frac{7}{2}[/tex]
[tex]x=9,3.5[/tex]
Substitute x =9 in A
[tex](10-2(9))(15-2(9))=24[/tex]
[tex]24=24[/tex]
LHS = RHS
Substitute x = 3.5
[tex](10-2(3.5))(15-2(3.5))=24[/tex]
[tex]24=24[/tex]
LHS = RHS
So, The width of the border can be 9 feet or 3.5 feet.