Respuesta :

Answer:

P(x)=(x-2)(x-4)(x+3)(x+6)

Step-by-step explanation:

Given: P(x)=x⁴+3x³-28x²-36x+144

It is a polynomial with degree 4.

It should maximum four factor.

Hit and trial error method.

Put x = 2 into P(x)

P(2)=2⁴+3×2³-28×2²-36×2+144

P(2) = 0

So, x-2 would be factor of P(x)

Now divide x⁴+3x³-28x²-36x+144 by x-2 to get another factors

[tex](x^4+3x^3-28x^2-36x+144)\div (x-2) = x^3+5x^2-18x-72[/tex]

[tex]P(x)=(x-2)(x^3+5x^2-18x-72)[/tex]

Put x = 4

[tex]P(4) = 0 [/tex]

now divide [tex]x^3+5x^2-18x-72[/tex] by x-4

[tex](x^3+5x^2-18x-72)\div (x-4) = x^2+9x+18[/tex]

[tex]P(x)=(x-2)(x-4)(x^2+9x+18)[/tex]

Now factor [tex]x^2+9x+18[/tex]

[tex]\Rightarrow x^2+9x+18[/tex]

[tex]\Rightarrow (x+6)(x+3)[/tex]

Complete factor of P(x)

P(x)=(x-2)(x-4)(x+3)(x+6)