Respuesta :

Answer:

x =  [tex]ye^{2a}[/tex]

Step-by-step explanation:

Data provided:

ln(x) − ln(y) = 2a

Now,

The using the following properties of log function,

we have

log(A) - log(B) = [tex]\ln(\frac{A}{B})[/tex]

and,

ln(a) = b is equivalent to a = [tex]e^b[/tex]  (here e is exponential )  

ln(e) = 1

therefore,

the above equation transforms as:

[tex]\ln(\frac{x}{y})[/tex] = 2a

taking anti-ln both sides,

we get

[tex]\frac{x}{y}[/tex] = [tex]e^{2a}[/tex]

or

x =  [tex]ye^{2a}[/tex]