Respuesta :

Answer:

[tex]\ln(\frac{xx + yy}{zz})^{\frac{1}{2}}[/tex]

Step-by-step explanation:

Given:

1/2(ln(xx + yy) − ln(zz))

Now,

From the properties of log function,

1)  n × ln(x) = ln(xⁿ)

and,

2)  ln(A) - ln(B) = [tex]\ln\frac{A}{B}[/tex]

applying the properties in the given equation

we get the above equation as:

[tex]\frac{1}{2}(\ln\frac{xx + yy}{zz})[/tex]        

( using the property 2 we get (ln(xx + yy) − ln(zz) = [tex]\ln\frac{xx + yy}{zz}[/tex]  

or

⇒ [tex]\ln(\frac{xx + yy}{zz})^{\frac{1}{2}}[/tex]    ( using the property 1 i.e n × ln(x) = ln(xⁿ) )

expression as an equivalent expression with a single logarithm is [tex]\ln(\frac{xx + yy}{zz})^{\frac{1}{2}}[/tex]