Respuesta :

frika

Answer:

[tex]x=3[/tex]

Step-by-step explanation:

Let [tex]k(x)=mx+b[/tex] be the expression for the linear function k(x), where m is the slope of the function and this function passes through the point (1,8).

Thus, [tex]m=-4[/tex] and the function expression is

[tex]k(x)=-4x+b[/tex]

If the graph of the function passes through the point (1,8), then its coordinates satisfy the function expression. Substitute them:

[tex]8=-4\cdot 1+b\\ \\8=-4+b\\ \\b=8-(-4)\\ \\b=12[/tex]

Hence,

[tex]k(x)=-4x+12[/tex]

The graph of this function intersects the x-axis at k(x)=0, then

[tex]-4x+12=0\\ \\-4x=-12\\ \\x=3[/tex]

Zero of the function is x=3