Answer:
See explanation
Step-by-step explanation:
Points A(-3, -3), B(-2, 2), C(3, 3), and D(2, -2) are the vertices of a quadrilateral.
Find lengths of the sides as distances between points:
[tex]AB=\sqrt{(-2-(-3))^2+(2-(-3))^2}=\sqrt{1^2+5^2}=\sqrt{26}\ units\\ \\BC=\sqrt{(3-(-2))^2+(3-2)^2}=\sqrt{5^2+1^2}=\sqrt{26}\ units\\ \\CD=\sqrt{(2-3)^2+(-2-3)^2}=\sqrt{1^2+5^2}=\sqrt{26}\ units\\ \\AD=\sqrt{(2-(-3))^2+(-2-(-3))^2}=\sqrt{5^2+1^2}=\sqrt{26}\ units[/tex]
Since all lengths of sides are the same, quadrilateral ABCD is the rhombus.