Mr. Mole left his burrow and started digging his way down at a constant rate. Time (minutes) Altitude (meters) 666 -20.4−20.4minus, 20, point, 4 999 -27.6−27.6minus, 27, point, 6 121212 -34.8−34.8minus, 34, point, 8 What is the altitude of Mr. Mole's burrow?

Respuesta :

Answer:

[tex]-6[/tex] meters.

Step-by-step explanation:

We have been given Mr. Mole left his burrow and started digging his way down at a constant rate.

We are also given a table of data as:

Time (minutes)     Altitude (meters)

6                                   -20.4

9                                   -27.6

12                                   -34.8

First of all, we will find Mr. Mole's digging rate using slope formula and given information as:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex], where,

[tex]y_2-y_1[/tex] represents difference of two y-coordinates,

[tex]x_2-x_1[/tex] represents difference of two corresponding x-coordinates of y-coordinates.

Let [tex](6,-20.4)[/tex] be [tex](x_1,y_1)[/tex] and [tex](9,-27.6)[/tex] be [tex](x_2,y_2)[/tex].

[tex]m=\frac{-27.6-(-20.4)}{9-6}[/tex]

[tex]m=\frac{-27.6+20.4}{3}[/tex]

[tex]m=\frac{-7.2}{3}[/tex]

[tex]m=-2.4[/tex]

Now, we will use slope-intercept form of equation to find altitude of Mr. Mole's burrow.

[tex]y=mx+b[/tex], where,

m = Slope,

b = The initial value or the y-intercept.

Upon substituting [tex]m=-2.4[/tex] and coordinates of point [tex](6,-20.4)[/tex], we will get:

[tex]-20.4=-2.4(6)+b[/tex]

[tex]-20.4=-14.4+b[/tex]

[tex]-20.4+14.4=-14.4+14.4+b[/tex]

[tex]-6=b[/tex]

Since in our given case y-intercept represents the altitude of Mr. Mole's burrow, therefore, the altitude of Mr. Mole's burrow is [tex]-6[/tex] meters.

Answer:

its 6 not -6

Step-by-step explanation: