Answer:
The time difference is 8.33 ms.
The phase difference between them is 60°
Explanation:
Given that,
Frequency = 10 Hz
Angle = 30°
We need to calculate the time difference
Using formula of time difference
[tex]\Delta t=\dfrac{\phi}{360^{\circ}\times f}[/tex]
Put the value into the formula
[tex]\Delta t=\dfrac{30}{360\times10}[/tex]
[tex]\Delta t=8.33\ ms[/tex]
If the frequency of these sine waves doubles, but the time difference stays the same,
[tex]f=20\ Hz[/tex]
We need to calculate the phase difference between them
Using formula of phase difference
[tex]\Delta \phi=\Delta t\times360\times f[/tex]
Put the value in to the formula
[tex]\Delta=8.33\times10^{-3}\times360\times20[/tex]
[tex]\Delta \phi=60^{\circ}[/tex]
Hence, The time difference is 8.33 ms.
The phase difference between them is 60°