A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 2 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency.

Respuesta :

Answer:

a. Mass flow rate through the boiler = 5.462lbm/s

b. Power produced by the turbine = 2525.8kW

c. The rate of heat supply in the boiler = 6901.42Btu/s

d. Thermal efficiency of the cycle = 34.3%

Explanation:

In order to provide a solution, we must assume that ;

- The system is operating at a steady condition

- Kinetic and potential energy changes are negligible

Now from steam tables, we calculate specific volume [tex]v[/tex] and enthalpy [tex]h[/tex] as,

[tex]h_1 = 95.96Btu/lb[/tex] (  [tex]h_1 = h_f[/tex] at [tex]2psia[/tex] )

[tex]v_1 = 0.016238ft^3/lb[/tex] ( [tex]v_1 = v_f[/tex] at [tex]2psia[/tex] )

[tex]w_{p,in} = v_1(P_2-P_1) = 0.016238(1500-2) * \frac{1}{5.404} = 4.501 Btu/lb[/tex]

[tex]w_p = h_2 - h_1\\h_2 = w_p+h_1=4.501+95.96=100.461Btu/lb[/tex]

[tex]h_3 = 1364.0Btu/lb[/tex]

[tex]s_3 = 1.5073Btu/lb.R[/tex]

( at [tex]P_3 = 1500psia[/tex] & [tex]T_3 = 800^0F[/tex] )

[tex]P_4 = 2psia\\S_4 = S_3\\x_4S = \frac{S_4-S_f}{S_{fg}}=\frac{1.5073-0.1783}{1.7374}=0.765[/tex]

( [tex]S_f[/tex] & [tex]S_{fg}[/tex] when pressure is 2psia)

[tex]h_4S = h_f+x_4S*h_{fg}=95.96+(0.765)(1021.0)=877.025Btu/lb[/tex]

[tex]n_T= \frac{h_3-h_4}{h_3-h_4S}\\ h_4=h_3-n_T(h_3-h_4S)=1364.0-0.90(1364.0-877.025)=925.7Btu/lb[/tex]

Therefore,

[tex]q_{in}=h_3-h_2=1364.0-100.461=1263.54Btu/lb\\q_{out}=h_4-h_1=925.7-95.96=829.74Btu/lb\\w_{net}=q_{in}-q_{out}=1263.54-829.74=433.8Btu/lb[/tex]

To calculate the mass flow rate of steam in the cycle, we use the formula

[tex]W_{net}=mw_{net}\\m=\frac{W_{net}}{w_{net}} =\frac{2500}{433.8}=5.763*(\frac{0.94782Btu}{1Kj} )=5.462lb/s[/tex]

where [tex]1Kj = 0.947817 Btu[/tex]

The power output and the rate of heat addition are calculated thus,

[tex]W_{T,out}=m(h_3-h_4)=(5.462lb/s)*(1364-925.7)Btu/lb*(\frac{1Kj}{0.94782Btu} )\\=5.462*438.3*1.055=2525.8KW[/tex]

[tex]Q_{in}=mq_{in}=5.462(1263.54)=6901.46Btu/s[/tex]

The thermal efficiency of the cycle can be found thus;

[tex]n_{th}=\frac{W_{net}}{Q_{in}} =\frac{2500}{6901.46}*(\frac{0.94782Btu}{1Kj} ) =0.343[/tex]

= 34.3%