PLEASE HELP

what is an equation of a line that is perpendicular to the line whose equation is 2y+3x=1 ?

1) y= 2/3x + 5/2
2) y= 3/2x + 2
3) y= -2/3x + 1
4) y= -3/2x + 1/2

Respuesta :

gmany

Answer:

[tex]\large\boxed{1)\ y=\dfrac{2}{3}x+\dfrac{5}{2}}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

Let

[tex]k:y=m_1x+b_1,\ l:y=m_2x+b_2\\\\l\ ||\ k\iff m_1=m_2\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}[/tex]

We have

[tex]2y+3x=1[/tex]

Convert to the slope-intercept from:

[tex]2y+3x=1[/tex]             subtract 3x from both sides

[tex]2y=-3x+1[/tex]            divide both sides by 2

[tex]y=-\dfrac{3}{2}x+\dfrac{1}{2}[/tex]

[tex]m_1=-\dfrac{3}{2}\to m_2=-\dfrac{1}{-\frac{3}{2}}=\dfrac{2}{3}[/tex]

Therefore your answer is

[tex]1)\ y=\dfrac{2}{3}x+\dfrac{5}{2}[/tex]