Respuesta :

the roots are [tex]\frac{7+\sqrt{61} }{2}[/tex] and [tex]\frac{7-\sqrt{61} }{2}[/tex]

Step-by-step explanation:

here we use Shridhar acharya formula

if a[tex]x^{2}[/tex] + bx +c = 0 is the quadratic equation

the the roots are , [tex]\frac{-b +\sqrt{b^{2-4ac} } }{2a}[/tex] and [tex]\frac{-b -\sqrt{b^{2-4ac} } }{2a}[/tex]

comparing with the equation we get a=1 b= -7 c = -3

hence the roots are [tex]\frac{7 +\sqrt{7^{2-4X1X(-3)} } }{2X1}[/tex] and [tex]\frac{7 -\sqrt{7^{2-4X1X(-3)} } }{2X1}[/tex]

= [tex]\frac{7+\sqrt{61} }{2}[/tex] and [tex]\frac{7-\sqrt{61} }{2}[/tex]

Answer: a

Step-by-step explanation:

a p e x

Ver imagen gageandrews11