In a standard tensile test, a steel rod of 7 8-in. diameter is subjected to a tension force of 17 kips. Knowing that ν = 0.30 and E = 29 × 106 psi, determine (a) the elongation of the rod in an 8-in. gage length, (b) the change in diameter of the rod. Beer, Ferdinand. Mechanics of Materials (p. 111). McGraw-Hill Higher Education. Kindle Edition.

Respuesta :

Answer:

(a) Elongation of the rod==5.61×10⁻⁹m

(b) Change in diameter=1.640×10⁻⁸m

Explanation:

Given data

Diameter d=78 in=1.9812 m

Cross Area is:

[tex]A=(\pi /4)d^{2} \\A=(\pi /4)(1.9812m)^{2}\\A=3.08m^{2}[/tex]

Applied Load P=17 KN=17×10³N

E=29 × 106 psi=1.99947961×10¹¹Pa

Stress and Strain in x direction

Stress in x direction

σ=P/A

[tex]=\frac{17*10^{3}N }{3.08m^{2} }\\ =5517.25Pa[/tex]

σ=5517.25 Pa

Strain in x direction

ε=σ/E

[tex]=\frac{5517.25}{1.99947961*10^{11} } \\=2.76*10^{-8}[/tex]

ε=2.76×10⁻⁸

Part (a)

Elongation of the rod=Lε

=(0.2032)(2.76×10⁻⁸)

Elongation of the rod==5.61×10⁻⁹m

Part(b) Change in diameter

Strain in y direction

ε₁= -vε

ε₁= -(0.30)(2.76×10⁻⁸)

ε₁=-8.28×10⁻⁹

Change in diameter=d×ε₁

Change in diameter=(1.9812m)×(-8.28×10⁻⁹)

Change in diameter=1.640×10⁻⁸m