contestada

How does the energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital compare to the energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital?

Respuesta :

Answer with Explanation:

[tex]n_1=2, n_2=3[/tex]

Energy of orbital

[tex]E_n=-\frac{2.18\times 10^{-18}}{n^2}[/tex]

Substitute the values

[tex]E_2=-\frac{2.18\times 10^{-18}}{(2)^2}=-\frac{2.18\times 10^{-18}}{4} J[/tex]

[tex]E_3=-\frac{2.18\times 10^{-18}}{3^2}=-\frac{2.18\times 10^{-18}}{9}[/tex] J

[tex]E_2-E_3=\frac{2.18\times 10^{-18}}{9}-\frac{2.18\times 10^{-18}}{4}[/tex]

[tex]E_2-E_3=2.18\times 10^{-18}(-\frac{1}{4}+\frac{1}{9})=2.18\times 10^{1-8}\times \frac{-5}{36} J[/tex]

Energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital=[tex]=E_2-E_3=-\frac{5}{36}\times 2.18\times 10^{-18} J[/tex]

The energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital=[tex]E_3-E_2=2.18\times 10^{-18}(-\frac{1}{9}+\frac{1}{4})[/tex]

The energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital=[tex]\frac{5}{36}\times 2.18\times 10^{-18} J[/tex]

Therefore, in both process the energy of absorbed photon and emitted photon are same but the process are complementary to each other.