Answer:
[tex]\lambda'=78.086\ nm[/tex]
Explanation:
Given:
Now we have the relation for time:
[tex]\rm time=\frac{distance}{speed}[/tex]
hence,
[tex]t=\frac{d}{c}[/tex]
c= speed of light in air
[tex]16.7\times 10^{-9}=\frac{d}{3\times 10^8}[/tex]
[tex]d=16.7\times 10^{-9}\times 3\times 10^8[/tex]
[tex]d=5.01\ m[/tex]
For the case when glass slab is inserted between the path of light:
[tex]\frac{(d-x)}{c} +\frac{x}{v} =t'[/tex] (since light travel with the speed c only in the air)
here:
v = speed of light in the glass
[tex]\frac{(5.01-0.87)}{3\times 10^8} +\frac{0.87}{v} =21.3\times 10^{-9}[/tex]
[tex]v=4.42\times 10^7\ m.s^{-1}[/tex]
Using Snell's law:
[tex]\frac{\lambda}{\lambda'} =\frac{c}{v}[/tex]
[tex]\frac{530}{\lambda'} =\frac{3\times 10^8}{4.42\times 10^7}[/tex]
[tex]\lambda'=78.086\ nm[/tex]