Solve the given initial-value problem in which the input function g(x) is discontinuous. [Hint: Solve the problem on two intervals, and then find a solution so that y and y' are continuous at x = π/2.] y'' + 4y = g(x), y(0) = 1, y'(0) = 4, where g(x) = sin(x), 0 ≤ x ≤ π/2 0, x > π/2

Respuesta :

Answer:

(1)

Therefore the complete solution is

[tex]y= cos2x+\frac{11}{12}sin2x+\frac13 sinx[/tex]

(2)

Therefore the complete solution is

[tex]y= cos2x+2sin2x[/tex]

Step-by-step explanation:

Given differential equation is

y''+4y = g(x) is associated  with y''+4y=0.

The auxiliary equation is

m²+4=0

⇒m²= -4

[tex]\Rightarrow m= \pm 2i[/tex]

The complimentary function is

[tex]y_c=Acos 2x+Bsin 2x[/tex]

Case 1:

[tex]0\le x \le \frac\pi2[/tex]

g(x)= sinx

Then y''+4 y= sin x

F(D)≡ (D²+1)     [Here [tex]D=\frac{d}{dx}[/tex] ]

Therefore

[tex]y_p=\frac{1}{D^2+4} (sin\ x)[/tex]

    [tex]=\frac{1}{-1^2+4} sin x[/tex]     [ replace D² by -1² and F(D)≠0]

    [tex]=\frac{1}{3}sin x[/tex]

The complete solution is

[tex]y=A cos 2x+Bsin2 x+\frac13sinx[/tex]

Differentiating with respect to x

[tex]y'=-2Asin2x+2Bcos2 x+\frac13cosx[/tex]

The initial condition are y(0) =1 and y'(0)=4

[tex]1=y(0)= A cos(2. 0) +B sin(2. 0)+\frac 13sin0[/tex]

[tex]\Rightarrow 1=A[/tex]

and

[tex]4=y'(0)=-2Asin(2.0)+2Bcos(2. 0)+\frac13cos0[/tex]

[tex]\Rightarrow 2B+\frac13= 4[/tex]

[tex]\Rightarrow 2B= 4-\frac13[/tex]

[tex]\Rightarrow B= \frac{11}{12}[/tex]

Therefore the complete solution is

[tex]y= cos2x+\frac{11}{12}sin2x+\frac13 sinx[/tex]

Case 2:

[tex]x>\frac\pi2[/tex]

g(x)=0

Then [tex]y_p=0[/tex]

The complete solution is

[tex]y=A cos 2x+Bsin2 x[/tex]

Differentiating with respect to x

[tex]y'=-2Asin2x+2Bcos2 x[/tex]

The initial condition are y(0) =1 and y'(0)=4

[tex]1=y(0)= A cos(2. 0) +B sin(2. 0)[/tex]

[tex]\Rightarrow 1=A[/tex]

and

[tex]4=y'(0)=-2Asin(2.0)+2Bcos(2. 0)[/tex]

[tex]\Rightarrow 2B= 4[/tex]

⇒B=2

Therefore the complete solution is

[tex]y= cos2x+2sin2x[/tex]