Answer: The final temperature of the system is 14.60°C
Explanation:
When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.
[tex]Heat_{\text{absorbed}}=Heat_{\text{released}}[/tex]
The equation used to calculate heat released or absorbed follows:
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex] ......(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of aluminium = 25.00 g
[tex]m_2[/tex] = mass of water = 100 g
[tex]T_{final}[/tex] = final temperature = ?°C
[tex]T_1[/tex] = initial temperature of aluminium = 100°C
[tex]T_2[/tex] = initial temperature of water = 10°C
[tex]c_1[/tex] = specific heat of aluminium = 0.900 J/g°C
[tex]c_2[/tex] = specific heat of water= 4.18 J/g°C
Putting values in equation 1, we get:
[tex]25\times 0.900\times (T_{final}-100)=-[100\times 4.18\times (T_{final}-10)][/tex]
[tex]T_{final}=14.60^oC[/tex]
Hence, the final temperature of the system is 14.60°C