Answer:
Equation of solid ball is [tex](x-10)^2+(y+10)^2+(z-7)^2\leq 4356[/tex].
Step-by-step explanation:
A equation of a solid ball centered at (a,b,c) with radious r is of the form,
[tex](x-a)^2+(y-b)^2+(z-c)^2-r^2\leq 0[/tex]
Here [tex](\leq)[/tex] takes the inner region and outer surfaces of the solid. So in this problem center (a,b,c)=(10,-10,-7) and radious r=66, then equation of required solid ball is,
[tex](x-10)^2+(y+10)^2+(z-7)^2-(66)^2\leq 0[/tex]
[tex]\implies(x-10)^2+(y+10)^2+(z-7)^2\leq 4356[/tex]