Respuesta :

Option C: [tex]\frac{x^{2}-9}{x^{2}-4}[/tex] is the product of the rational expression.

Explanation:

The given rational expression is [tex]\frac{x+3}{x+2} \cdot \frac{x-3}{x-2}[/tex]

We need to determine the product of the rational expression.

Product of the rational expression:

Let us multiply the rational expression to determine the product of the rational expression.

Thus, we have;

[tex]\frac{(x+3)(x-3)}{(x+2)(x-2)}[/tex]

Let us use the identity [tex](a+b)(a-b)=a^2-b^2[/tex] in the above expression.

Thus, we get;

[tex]\frac{x^{2} -3^2}{x^{2} -2^2}[/tex]

Simplifying the terms, we get;

[tex]\frac{x^{2}-9}{x^{2}-4}[/tex]

Thus, the product of the rational expression is [tex]\frac{x^{2}-9}{x^{2}-4}[/tex]

Hence, Option C is the correct answer.