Respuesta :

Option C:

[tex]\frac{10}{\sin 29^{\circ}}[/tex] can be used to find the length of PQ.

Solution:

Given PQR is a right triangle.

θ = m∠Q = 29°

Opposite of θ = PR = 10

Hypotenuse = PQ = ?

To find the length of PQ:

Using trigonometric ratio formula:

[tex]$\sin \theta=\frac{\text { Opposite side of } \theta}{\text { Hypotenuse }}[/tex]

[tex]$\sin \theta=\frac{PR}{PQ}[/tex]

[tex]$\sin 29^\circ=\frac{10}{PQ}[/tex]

Multiply by PQ on both sides.

[tex]$PQ \times \sin 29^\circ=\frac{10}{PQ} \times PQ[/tex]

[tex]$PQ \times \sin 29^\circ=10[/tex]

Divide by sin 29° on both sides.

[tex]$\frac{PQ \times \sin 29^\circ}{ \sin 29^\circ} =\frac{10}{ \sin 29^\circ}[/tex]

[tex]$PQ=\frac{10}{ \sin 29^\circ}[/tex]

Therefore [tex]\frac{10}{\sin 29^{\circ}}[/tex] can be used to find the length of PQ.

Option C is the correct answer.