An electron is projected with an initial speed of 5 3.2 10 / ⋅ m s directly toward a proton that is fixed in place. If the electron is initially a great distance from the proton, at what distance from the proton is the speed of the electron instantaneously equal to twice the initial value?

Respuesta :

Answer:

The distance is [tex]d =1.66*10^{-9}m[/tex]

Explanation:

From the question we are told that

         The initial speed of the  electron is [tex]v_i = 3.2 *10^5 m/s[/tex]

         The mass of electron is [tex]m = 9.11*10^{-31}kg[/tex]

         Let [tex]d[/tex] be the distance between the electron and the proton when the speed of the electron instantaneously equal to twice the initial value

         Let [tex]KE_i[/tex] be the initial kinetic energy of the electron \

          Let [tex]KE_d[/tex] be the kinetic energy of the electron at the distance [tex]d[/tex] from the proton

  Considering that energy is conserved,

  The energy at the initial position of the electron = The energy at the final position of the electron

      i.e

             [tex]KE_i +U_1 = KE_d + U_2[/tex]

[tex]U_1 \ and \ U_2[/tex] are the potential energy at the initial  position of the electron and at distance d of the electron to the proton

                Here [tex]U_1 = 0[/tex]

So the equation becomes

                   [tex]\frac{1}{2} mv_i^2 = \frac{1}{2} mv_d^2 + \frac{kq_1 q_2}{d}[/tex]

Here [tex]q_1 \ and \ q_2[/tex] are the charge on the electron and the proton and their are the same since a charge on an electron is equal to charge on a proton

 [tex]k[/tex] is electrostatic constant with value [tex]8.99*10^9 N \cdot m^2 /C^2[/tex]

i.e [tex]q = 1.602 *10^{-19}C[/tex]

           [tex]v_d[/tex] is the velocity at distance d from the proton = 2[tex]v_i[/tex]

  So the equation becomes

             [tex]\frac{1}{2}mv_i^2 = \frac{1}{2} m (2v_i)^2 -\frac{k(q)^2}{d}[/tex]

            [tex]\frac{1}{2} mv_i^2 = 4 [\frac{1}{2}mv_i^2 ]- \frac{k(q)^2}{d}[/tex]

           [tex]3[\frac{1}{2}mv_i^2 ] = \frac{k(q)^2}{d}[/tex]

Making d the subject of the formula

           [tex]d = \frac{2k(q)^2}{3mv_i^2}[/tex]

              [tex]= \frac{2* 8.99*10^9 *(1.602*10^{-19}^2)}{3 * 9.11*10^{-31} *(3.2*10^5)^2}[/tex]

              [tex]=1.66*10^{-9}m[/tex]