Answer:
a) txy = 1115.5 MPa
b) oy is independent of pressure, thus txy=1115.5 MPa
Explanation:
The stress tensor is:
[tex]o=\left[\begin{array}{ccc}-p&t&0\\t&-p&0\\0&0&-p\end{array}\right][/tex]
where p is the pressure, t is the shear stress
[tex]oy=\sqrt{(oxx^{2}+oyy^{2}+ozz^{2}-oxxoyy-oyyozz-ozzoxx)+3(txy^{2}+tyz^{2}+tzx^{2} }[/tex]
substituting the matrix values:
[tex]oy=\sqrt{p^{2}+p^{2}+p^{2}-p^{2}-p^{2}-p^{2}+3(t^{2}+0+0) } =\sqrt{3} t[/tex]
a) [tex]oy=\frac{oo}{F} =\sqrt{3} t=\frac{300}{1.5}[/tex]
Clearing t:
t=1115.5 MPa = txy
b) oy is independent of pressure, thus txy=1115.5 MPa