What mass of ethylene glycol, when mixed with 183 g H2O, will reduce the equilibrium vapor pressure of H2O from 1.00 atm to 0.800 atm at 100 °C? The molar masses of water and ethylene glycol are 18.02 g/mol and 62.07 g/mol, respectively. Assume ideal behavior for the solution.

Respuesta :

Answer: 158 grams

Explanation:

As the relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.

The formula for relative lowering of vapor pressure will be,

[tex]\frac{p^o-p_s}{p^o}=i\times x_2[/tex]

where,

[tex]\frac{p^o-p_s}{p^o}[/tex]= relative lowering in vapor pressure

i = Van'T Hoff factor = 1 (for non electrolytes)

[tex]x_2[/tex] = mole fraction of solute Ā =[tex]\frac{\text {moles of solute}}{\text {total moles}}[/tex]

Given : x g of ethylene glycol is present in 183 g of water

moles of solute (ethylene glycol) = [tex]\frac{\text{Given mass}}{\text {Molar mass}}=\frac{x}{62.07}moles[/tex]

moles of solvent (water) = [tex]\frac{\text{Given mass}}{\text {Molar mass}}=\frac{183g}{18.02g/mol}=10.2moles[/tex]

Total moles = moles of solute (ethylene glycol) Ā + moles of solvent (water) = [tex]\frac{x}{62.07}[/tex] + 10.2

[tex]x_2[/tex] = mole fraction of solute =[tex]\frac{\frac{x}{62.07}}{\frac{x}{62.07}+10.2}[/tex]

[tex]\frac{1.00-0.800}{1.00}=1\times \frac{\frac{x}{62.07}}{\frac{x}{62.07}+10.2} [/tex]

[tex]0.2= \frac{\frac{x}{62.07}}{\frac{x}{62.07}+10.2}[/tex]

[tex]x=158g[/tex]

Thus the mass of ethylene glycol should be 158 g