Hello,
That's better.
I suppose [tex]y=( \sqrt{x} + \dfrac{1}{ \sqrt{x} } )^2 \\
y'=2*( \sqrt{x} + \dfrac{1}{ \sqrt{x} } )*( \dfrac{1}{2 \sqrt{x} } - \dfrac{3}{2x \sqrt{x} } )[/tex]
If x=2 then
[tex]y'=2*( \sqrt{2} + \dfrac{1}{ \sqrt{2} } )*( \dfrac{1}{2 \sqrt{2} } - \dfrac{3}{2*2* \sqrt{2} } )\\
=2* \dfrac{2+ \sqrt{2} }{ \sqrt{2} } * \dfrac{1}{4*\sqrt{2} } *(-1)\\
=- \dfrac{2+ \sqrt{2} }{4} [/tex]