Respuesta :
Answer:
[tex]p_{Cl_2}=1.97atm[/tex]
Explanation:
Hello,
In this case, given the reaction:
[tex]PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)[/tex]
Thus, the law of mass action in terms of partial pressures is:
[tex]Kp=\frac{p_{PCl_3}p_{Cl_2}}{p_{PCl_5}}[/tex]
Hence, given the partial pressures of phosphorous penta and trichloride and the Kpa, one computes the equilibrium partial pressure of chlorine as shown below:
[tex]p_{Cl_2}=\frac{Kp*p_{PCl_5}}{p_{PCl_3}}=\frac{1.05*0.875atm}{0.463atm} \\\\p_{Cl_2}=1.97atm[/tex]
Best regards.
Answer:
1.98 atm
Explanation:
To do this, let's write the equilibrium reaction of decomposition of PClâ :
PClâ --------> PClâ + Clâ Â Â Â Kp = 1.05
Now, the Kp expression is the following:
Kp = PpClâ * PpPClâ / PpClâ
Solving for Clâ:
PpClâ = Kp * PpClâ / PpPClâ
We already have the partial pressures of the reagents, so, replacing in the above expression we have:
PpClâ = 1.05 * 0.875 / 0.463
PpClâ = 1.98 atm