The vector x is in a subspace H with a basis Bequals​{Bold b 1​,Bold b 2​}. Find the​ B-coordinate vector of x. Bold b 1equals[Start 3 By 1 Matrix 1st Row 1st Column 1 2nd Row 1st Column 2 3rd Row 1st Column negative 3 EndMatrix ]​, Bold b 2equals[Start 3 By 1 Matrix 1st Row 1st Column negative 4 2nd Row 1st Column negative 7 3rd Row 1st Column 11 EndMatrix ]​, xequals[Start 3 By 1 Matrix 1st Row 1st Column negative 10 2nd Row 1st Column negative 17 3rd Row 1st Column 27 EndMatrix ]

Respuesta :

Answer and Step-by-step explanation: To find the B-coordinate vector of x:

[tex]b_{1} = \left[\begin{array}{ccc}1\\2\\-3\end{array}\right][/tex] , [tex]b_{2} = \left[\begin{array}{ccc}-4\\-7\\11\end{array}\right][/tex], x = [tex]\left[\begin{array}{ccc}-10\\-17\\27\end{array}\right][/tex]

The augmented matrix will be:

[tex]\left[\begin{array}{ccc}1&-4&-10\\2&-7&-17\\-3&11&27\end{array}\right][/tex]

Transforming into reduced row-echelon form:

= [tex]\left[\begin{array}{ccc}1&-4&-10\\0&1&3\\0&-1&-3\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}1&-4&-10\\0&1&3\\0&0&0\end{array}\right][/tex]

= [tex]\left[\begin{array}{ccc}1&0&2\\0&1&3\\0&0&0\end{array}\right][/tex]

The values for the vector will be:

x = 2

y = 3

The B-coordinate vector is of the form:

V = [tex]\left[\begin{array}{ccc}x\\y\end{array}\right][/tex]

V = [tex]\left[\begin{array}{ccc}2\\3\end{array}\right][/tex]

The B-coordinate vector of x is V = [tex]\left[\begin{array}{ccc}2\\3\end{array}\right][/tex]