Let Y be a random variable. In a​ population, mu Subscript Upper Y Baseline equals 65μY=65 and sigma Subscript Upper Y Superscript 2 Baseline equals 49σ2Y=49. Use the central limit theorem to answer the following questions. ​ (Note​: any intermediate results should be rounded to four decimal​ places)
In a random sample of size n​ = 69​, find Pr(Y <68) =
In a random sample of size n​ = 124​, find Pr (68< Y <69)=
In a random sample of size n​ = 196​, find Pr (Y >66)=

Respuesta :

Answer:

a. [tex]\mathbf{P(\overline x < 68) = 0.9998}[/tex]

b. [tex]\mathbf{P(68 < \overline x < 69 ) =0}[/tex]

c. [tex]\mathbf{P ( \overline x > 66 ) =0.02275}[/tex]

Step-by-step explanation:

Given that ;

Let Y be a random variable In a​ population, where:

mean [tex]\mu_y[/tex] = 65

[tex]\sigma^2_y[/tex] = 49

standard deviation σ  = [tex]\sqrt{49}[/tex] = 7

The objective is to determine the following :

In a random sample of size n​ = 69​, find Pr(Y <68) =

Using the Central limit theorem

[tex]P(\overline x < 68) = \begin {pmatrix} \dfrac{\overline x - \mu }{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{68 - \mu }{\dfrac{\sigma}{\sqrt{n}}} } \end {pmatrix}[/tex]

[tex]P(\overline x < 68) = \begin {pmatrix}Z < \dfrac{68 - 65 }{\dfrac{7}{\sqrt{69}}} } \end {pmatrix}[/tex]

[tex]P(\overline x < 68) = \begin {pmatrix}Z < \dfrac{3 }{\dfrac{7}{8.3066}} } \end {pmatrix}[/tex]

[tex]P(\overline x < 68) = (Z < 3.5599 )[/tex]

From the z tables:

[tex]\mathbf{P(\overline x < 68) = 0.9998}[/tex]

In a random sample of size n​ = 124​, find Pr (68< Y <69)=

[tex]P(68 < \overline x < 69 ) = P \begin {pmatrix} \dfrac{68- \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline x - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{ 69 - \mu}{\dfrac{\sigma}{\sqrt{n}}} \end {pmatrix}[/tex]

[tex]P(68 < \overline x < 69 ) = P \begin {pmatrix} \dfrac{68- 65}{\dfrac{7}{\sqrt{124}}} < Z < \dfrac{ 69 - 65}{\dfrac{7}{\sqrt{124}}} \end {pmatrix}[/tex]

[tex]P(68 < \overline x < 69 ) = P \begin {pmatrix} \dfrac{3}{\dfrac{7}{11.1355}} < Z < \dfrac{ 4}{\dfrac{7}{11.1355}} \end {pmatrix}[/tex]

[tex]P(68 < \overline x < 69 ) = P \begin {pmatrix} 4.7724 < Z < 6.3631 \end {pmatrix}[/tex]

[tex]P(68 < \overline x < 69 ) = P( Z < 6.3631 ) - P ( Z < 4.7724 )[/tex]

From z tables

[tex]P(68 < \overline x < 69 ) = 0.9999 - 0.9999[/tex]

[tex]\mathbf{P(68 < \overline x < 69 ) =0}[/tex]

In a random sample of size n​ = 196​, find Pr (Y >66)=

[tex]P ( \overline x > 66 ) = P ( \dfrac{\overline x -\mu }{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{66 -\mu }{\dfrac{\sigma}{\sqrt{n}}})[/tex]

[tex]P ( \overline x > 66 ) = P ( Z> \dfrac{66 - 65 }{\dfrac{7}{\sqrt{196}}})[/tex]

[tex]P ( \overline x > 66 ) = P ( Z> \dfrac{1 }{\dfrac{7}{14}})[/tex]

[tex]P ( \overline x > 66 ) = P ( Z> \dfrac{14 }{7})[/tex]

[tex]P ( \overline x > 66 ) = P ( Z>2)[/tex]

[tex]P ( \overline x > 66 ) = 1 - P ( Z<2)[/tex]

from z tables

[tex]P ( \overline x > 66 ) = 1 - 0.9773[/tex]

[tex]\mathbf{P ( \overline x > 66 ) =0.02275}[/tex]