Respuesta :

Answer:

The answer is

[tex]2n \sqrt{6n} [/tex]

Step-by-step explanation:

[tex] \sqrt{24 {n}^{3} } [/tex]

First of all factor out the perfect square out.

In this question the perfect squares are 4 and x²

So we have

[tex] \sqrt{4 \times {n}^{2} \times 6n} [/tex]

Separate the radicals

That's

[tex] \sqrt{4} \times \sqrt{ {n}^{2} } \times \sqrt{6n} [/tex]

Simplify

[tex] \sqrt{4} = 2 \\ \sqrt{ {n}^{2} } = n[/tex]

So we have

[tex]2 \times n \times \sqrt{6n} [/tex]

We have the final answer as

[tex]2n \sqrt{6n} [/tex]

Hope this helps

Answer:

[tex]2n \sqrt{6n} [/tex]

Step-by-step explanation:

[tex] \sqrt{24n {}^{3} } [/tex]

Factor out the perfect square ⬜

[tex] \sqrt{2 {}^{2} } \times 6 {n}^{3} [/tex]

[tex] \sqrt{ {2}^{2} } \times 6n {}^{2} \times n[/tex]

Please the square root is for the entire formula ⬆️⬆️⬆️

the root of the product is equals to the root of each Factor

[tex] \sqrt{2 {}^{2} } \sqrt{n {}^{2} } \sqrt{6n} [/tex]

reduce the index of the radical and exponent with 2

[tex]2 \sqrt{n {}^{2} } \sqrt{6n} [/tex]

[tex]2n \sqrt{6n} [/tex]

Solution

2n square root 6n

[tex]2n \sqrt{6n} [/tex]

Hope this helps.....