Respuesta :
Answer:
The answer is
[tex]2n \sqrt{6n} [/tex]
Step-by-step explanation:
[tex] \sqrt{24 {n}^{3} } [/tex]
First of all factor out the perfect square out.
In this question the perfect squares are 4 and x²
So we have
[tex] \sqrt{4 \times {n}^{2} \times 6n} [/tex]
Separate the radicals
That's
[tex] \sqrt{4} \times \sqrt{ {n}^{2} } \times \sqrt{6n} [/tex]
Simplify
[tex] \sqrt{4} = 2 \\ \sqrt{ {n}^{2} } = n[/tex]
So we have
[tex]2 \times n \times \sqrt{6n} [/tex]
We have the final answer as
[tex]2n \sqrt{6n} [/tex]
Hope this helps
Answer:
[tex]2n \sqrt{6n} [/tex]
Step-by-step explanation:
[tex] \sqrt{24n {}^{3} } [/tex]
Factor out the perfect square ⬜
[tex] \sqrt{2 {}^{2} } \times 6 {n}^{3} [/tex]
[tex] \sqrt{ {2}^{2} } \times 6n {}^{2} \times n[/tex]
Please the square root is for the entire formula ⬆️⬆️⬆️
the root of the product is equals to the root of each Factor
[tex] \sqrt{2 {}^{2} } \sqrt{n {}^{2} } \sqrt{6n} [/tex]
reduce the index of the radical and exponent with 2
[tex]2 \sqrt{n {}^{2} } \sqrt{6n} [/tex]
[tex]2n \sqrt{6n} [/tex]
Solution
2n square root 6n
[tex]2n \sqrt{6n} [/tex]
Hope this helps.....