Respuesta :

Answer:

[tex](\frac{1}{\sqrt{2} }, \frac{-1}{\sqrt{2} } )[/tex]

Step-by-step explanation:

The unit vector for a nonzero vector, say u, in the direction of u is given by:

û = [tex]\frac{u}{|u|}[/tex]             ---------------(i)

Where;

|u| = magnitude of vector u

From the question;

u = (4, -4)

First let's calculate the magnitude of u as follows;

|u| = [tex]\sqrt{(4)^2 + (-4)^2}[/tex]

|u| = [tex]\sqrt{16 + 16}[/tex]

|u| = [tex]\sqrt{32}[/tex] = [tex]4\sqrt{2}[/tex]

Now, substitute u and |u| into equation (i) as follows;

û = [tex]\frac{(4, -4)}{4\sqrt{2} }[/tex]

û = [tex](\frac{4}{4\sqrt{2} }, \frac{-4}{4\sqrt{2} } )[/tex]

û = [tex](\frac{1}{\sqrt{2} }, \frac{-1}{\sqrt{2} } )[/tex]

Therefore, the unit vector is [tex](\frac{1}{\sqrt{2} }, \frac{-1}{\sqrt{2} } )[/tex]