Respuesta :

Use the chain rule:

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm du}\dfrac{\mathrm du}{\mathrm dx}[/tex]

We have

[tex]y=8u-6\implies\dfrac{\mathrm dy}{\mathrm du}=8[/tex]

[tex]u=3x-8\implies\dfrac{\mathrm du}{\mathrm dx}=3[/tex]

so we get

[tex]\dfrac{\mathrm dy}{\mathrm dx}=8\cdot3=\boxed{24}[/tex]

Alternatively, you can substitute u in the definition of y and differentiate with respect to x :

[tex]y=8u-6=8(3x-8)=24x-64\implies\dfrac{\mathrm dy}{\mathrm dx}=24[/tex]