Respuesta :

Answer:

The average rate of change of the function [tex]f(x)=x^2-2x-5[/tex]  for interval [tex]-5\leq x\leq 6[/tex] is -1

Step-by-step explanation:

We are given function [tex]f(x)=x^2-2x-5[/tex] and we need to determine the average rate of change of the function for interval [tex]-5\leq x\leq 6[/tex]

The formula used to find average rate of change is: [tex]Average \ rate \ of \ change=\frac{f(b)-f(a)}{b-a}[/tex]

We are given b=6 and a=-5

We need to find f(b) and f(a)

Finding f(b)

Putting x= 6 to find f(b)

[tex]f(x)=x^2-2x-5\\Put \ x=6\\f(6)=(6)^2-2(6)-5\\f(6)=36-12-5\\f(6)=19[/tex]

So, f(b)=19

Now finding f(a)

Putting x= -5 to find f(a)

[tex]f(x)=x^2-2x-5\\Put \ x=-5\\f(-5)=(-5)^2-2(-5)-5\\f(-5)=25+10-5\\f(-5)=30[/tex]

So, f(a)= 30

Finding average rate of change

[tex]Average \ rate \ of \ change=\frac{f(b)-f(a)}{b-a}\\Average \ rate \ of \ change=\frac{19-30}{6-(-5)}\\Average \ rate \ of \ change=\frac{-11}{6+5}\\Average \ rate \ of \ change=\frac{-11}{11}\\Average \ rate \ of \ change=-1[/tex]

Average rate of change = -1

So, average rate of change of the function [tex]f(x)=x^2-2x-5[/tex]  for interval [tex]-5\leq x\leq 6[/tex] is -1