Respuesta :

Space

Answer:

(8, 11)

General Formulas and Concepts:

Pre-Algebra

  • Order of Operations: BPEMDAS
  • Equality Properties

Algebra I

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

Step 1: Define systems

12x + 6y = 162

2x + 10y = 126

Step 2: Simplify systems

2x + y = 27

x + 5y = 63

Step 3: Rewrite systems

2x + y = 27

x = 63 - 5y

Step 4: Solve for y

  1. Substitute in x:                        2(63 - 5y) + y = 27
  2. Distribute 2:                            126 - 10y + y = 27
  3. Combine like terms:               126 - 9y = 27
  4. Isolate y term:                         -9y = -99
  5. Isolate y:                                  y = 11

Step 5: Solve for x

  1. Define equation:                    x + 5y = 63
  2. Substitute in y:                       x + 5(11) = 63
  3. Multiply:                                  x + 55 = 63
  4. Isolate x:                                 x = 8

Answer:

x = 8 and y = 11

Step-by-step explanation:

solve for y

12x + 6y = 162

-12x          -12x

6y = 162 - 12x

/6             /6  

y = 27 - 2x

substitute

2x + 10(y) = 126

2x + 10(27 - 2x) = 126

2x + 270 - 20x = 126

-18x + 270 = 126

       -270    -270

-18x = -144

-18        -18

x = 8

substitute again:

y = 27 - 2(x)

y = 27 - 2(8)

y = 27 - 16

y = 11