contestada

Given AB¯¯¯¯¯¯¯¯AB¯ where A(4, 0)A(4, 0)and M(2, 1.5)M(2, 1.5) and M is the midpoint of AB¯¯¯¯¯¯¯¯AB¯ . The coordinates of B would be

Respuesta :

Answer:

[tex]B = (0,3)[/tex]

Explanation:

Given

[tex]A=(4,0)[/tex]

[tex]M = (2,1.5)[/tex]

Required

Find B

Since M is the midpoint of AB, we make use of midpoint formula to solve this question

[tex]M(x,y) = (\frac{x_1+x_2}{2}.\frac{y_1+y_2}{2})[/tex]

Where

[tex]A(x_1,y_1) = (4,0)[/tex]

[tex]M(x,y) = (2,1.5)[/tex]

So, we have:

[tex](2,1.5) = (\frac{4+x_2}{2},\frac{0+y_2}{2})[/tex]

Multiply through by 2

[tex](4,3) = (4+x_2,0+y_2)[/tex]

[tex](4,3) = (4+x_2,y_2)[/tex]

By comparison:

[tex]4 = 4 + x_2[/tex] and [tex]3 = y_2[/tex]

Solve for x2

[tex]4 = 4 + x_2[/tex]

[tex]x_2=4-4[/tex]

[tex]x_2=0[/tex]

[tex]y_2 = 3[/tex]

Hence, the coordinates of B is: [tex](0,3)[/tex]