Respuesta :

Space

Answer:

(f · g)(x) = 4x³ + x² - 20x - 5

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Combining Like Terms
  • Expand by FOIL (First Outside Inside Last)

Step-by-step explanation:

Step 1: Define

f(x) = 4x + 1

g(x) = x² - 5

(f · g)(x) is f(x)g(x)

Step 2: Find (f · g)(x)

  1. Substitute:                    (f · g)(x) = (4x + 1)(x² - 5)
  2. Expand [FOIL]:             (f · g)(x) = 4x³ - 20x + x² - 5
  3. Combine like terms:    (f · g)(x) = 4x³ + x² - 20x - 5

Given :

  • [tex] \sf f(x) =4x+1[/tex]
  • [tex] \sf g(x)=x²-5[/tex]

To Find :

  • [tex] \sf (f . g)(x)[/tex]

Solution :

We know that,

[tex] \Large \underline{\boxed{\sf{ (f . g)(x) = f(x) \times g(x) }}}[/tex]

By substituting values :

[tex] \sf : \implies (f . g)(x) = (4x+1) \times (x^{2} -5)[/tex]

[tex] \sf : \implies (f . g)(x) = 4x(x^{2} -5) +1(x^{2} -5)[/tex]

[tex] \sf : \implies (f . g)(x) = 4x^{3} - 20x + x^{2} -5[/tex]

[tex] \sf : \implies (f . g)(x) = 4x^{3} + x^{2} - 20x -5[/tex]

Hence, answer is :

[tex]\underline{\boxed{\sf{(f . g)(x) = 4x^{3} + x^{2} - 20x - 5}}}[/tex]