Respuesta :
Answer:
(f · g)(x) = 4x³ + x² - 20x - 5
General Formulas and Concepts:
Pre-Algebra
- Distributive Property
Algebra I
- Combining Like Terms
- Expand by FOIL (First Outside Inside Last)
Step-by-step explanation:
Step 1: Define
f(x) = 4x + 1
g(x) = x² - 5
(f · g)(x) is f(x)g(x)
Step 2: Find (f · g)(x)
- Substitute: (f · g)(x) = (4x + 1)(x² - 5)
- Expand [FOIL]: (f · g)(x) = 4x³ - 20x + x² - 5
- Combine like terms: (f · g)(x) = 4x³ + x² - 20x - 5
Given :
- [tex] \sf f(x) =4x+1[/tex]
- [tex] \sf g(x)=x²-5[/tex]
To Find :
- [tex] \sf (f . g)(x)[/tex]
Solution :
We know that,
[tex] \Large \underline{\boxed{\sf{ (f . g)(x) = f(x) \times g(x) }}}[/tex]
By substituting values :
[tex] \sf : \implies (f . g)(x) = (4x+1) \times (x^{2} -5)[/tex]
[tex] \sf : \implies (f . g)(x) = 4x(x^{2} -5) +1(x^{2} -5)[/tex]
[tex] \sf : \implies (f . g)(x) = 4x^{3} - 20x + x^{2} -5[/tex]
[tex] \sf : \implies (f . g)(x) = 4x^{3} + x^{2} - 20x -5[/tex]
Hence, answer is :
[tex]\underline{\boxed{\sf{(f . g)(x) = 4x^{3} + x^{2} - 20x - 5}}}[/tex]