Solution :
Given :
k = 0.5 per day
[tex]$C_s = 10 \ mg/L \ ; \ \ Q_s= 40 \ m^3/s$[/tex]
[tex]$C_{sw} = 100 \ ppm \ ; \ \ Q_{sw}= 0.5 \ m^3/s$[/tex]
Volume, V [tex]$= 200 \ m^3$[/tex]
Now, input rate = output rate + KCV ------------- (1)
Input rate [tex]$= Q_s C_s + Q_{sw}C_{sw}$[/tex]
[tex]$=(40 \times 10) + (0.5\times 100)$[/tex]
[tex]$= 2 \times 10^5 \ mg/s$[/tex]
The output rate [tex]$= Q_m C_{m}$[/tex]
= ( 40 + 0.5 ) x C x 1000
[tex]$=40.5 \times 10^3 \ C \ mg/s$[/tex]
Decay rate = KCV
∴[tex]$KCV =\frac{0.5/d \times C \ \times 200 \times 1000}{24 \times 3600}$[/tex]
= 1.16 C mg/s
Substituting all values in (1)
[tex]$2 \times 10^5 = 40.5 \times 10^3 \ C+ 1.16 C$[/tex]
C = 4.93 mg/L