Respuesta :

Answer: [tex]1.25dm^3[/tex] of unreacted oxygen is left.

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given volume}}{\text{Molar Volume}}[/tex]    

[tex]\text{Moles of} CO_2=\frac{3.60dm^3}{22.4dm^3}=0.161moles[/tex]

[tex]\text{Moles of} O_2=\frac{7.25dm^3}{22.4dm^3}=0.324moles[/tex]

[tex]C_3H_8(g)+5O_2(g)\rightarrow 3CO_2(g)+4H_2O(l)[/tex]  

According to stoichiometry :

3 moles of [tex]CO_2[/tex]  = 5 moles of [tex]O_2[/tex]  

Thus 0.161 moles of [tex]CO_2[/tex] =[tex]\frac{5}{3}\times 0.161=0.268moles[/tex]  of [tex]O_2[/tex]

moles of [tex]O_2[/tex]  left unreacted = (0.324-0.268) = 0.056

Volume of [tex]O_2[/tex] left unreacted = [tex]moles\times {\text {Molar volume}}=0.056mol\times 22.4dm^3/mol=1.25dm^3[/tex]

Thus [tex]1.25dm^3[/tex] of unreacted oxygen is left.