Given directed line segment with endpoints A(-3, 1) and B(5, 13), what is the coordinate that partitions the line segment into a ratio of 1:3?


A(4, –1)

B(–1, 4)

C(–⅓, 5)

D(5, –⅓)

Respuesta :

Answer:

B(–1, 4)

Step-by-step explanation:

We want to find a point P(x,y).

Since it is on the directed line segment AB in the ratio 1:3, it means that:

[tex]P - A = \frac{1}{1+3}(B-A)[/tex]

So

[tex]P - A = \frac{1}{4}(B-A)[/tex]

We apply this to both the x-coordinate and y-coordinate of P.

x-coordinate:

x-coordinate of A: -3

x-coordinate of B: 5

x-coordinate of P: x

So

[tex]P - A = \frac{1}{4}(B-A)[/tex]

[tex]x - (-3) = \frac{1}{4}(5 - (-3))[/tex]

[tex]x + 3 = \frac{1}{4} \times 8[/tex]

[tex]x + 3 = 2[/tex]

[tex]x = -1[/tex]

y-coordinate:

y-coordinate of A: 1

y-coordinate of B: 13

y-coordinate of P: y

So

[tex]P - A = \frac{1}{4}(B-A)[/tex]

[tex]y - 1 = \frac{1}{4}(13 - 1)[/tex]

[tex]y - 1 = \frac{1}{4} \times 12[/tex]

[tex]y - 1 = 3[/tex]

[tex]y = 4[/tex]

So the correct answer is given by option B.